An electrically driven single-atom “flip-flop” qubit

Author:

Savytskyy Rostyslav1ORCID,Botzem Tim1ORCID,Fernandez de Fuentes Irene1,Joecker Benjamin1ORCID,Pla Jarryd J.1ORCID,Hudson Fay E.1ORCID,Itoh Kohei M.2,Jakob Alexander M.3ORCID,Johnson Brett C.3ORCID,Jamieson David N.3ORCID,Dzurak Andrew S.1ORCID,Morello Andrea1ORCID

Affiliation:

1. School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.

2. School of Fundamental Science and Technology, Keio University, Kohoku-ku, Yokohama, Japan.

3. School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia.

Abstract

The spins of atoms and atom-like systems are among the most coherent objects in which to store quantum information. However, the need to address them using oscillating magnetic fields hinders their integration with quantum electronic devices. Here, we circumvent this hurdle by operating a single-atom “flip-flop” qubit in silicon, where quantum information is encoded in the electron-nuclear states of a phosphorus donor. The qubit is controlled using local electric fields at microwave frequencies, produced within a metal-oxide-semiconductor device. The electrical drive is mediated by the modulation of the electron-nuclear hyperfine coupling, a method that can be extended to many other atomic and molecular systems and to the hyperpolarization of nuclear spin ensembles. These results pave the way to the construction of solid-state quantum processors where dense arrays of atoms can be controlled using only local electric fields.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust macroscopic Schrödinger's cat on a nucleus;Physical Review Research;2024-01-26

2. Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies;Physical Review X;2023-10-25

3. Semiconductor spin qubits;Reviews of Modern Physics;2023-06-14

4. Silicon spin qubits from laboratory to industry;Journal of Physics D: Applied Physics;2023-06-07

5. Dispersive cavity-mediated quantum gate between driven dot-donor nuclear spins;Physical Review B;2023-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3