Uncovering the mechanisms of efficient upconversion in two-dimensional perovskites with anti-Stokes shift up to 220 meV

Author:

Wu Bo12ORCID,Wang Aocheng23ORCID,Fu Jing4ORCID,Zhang Yutong23,Yang Cheng1ORCID,Gong Yiyang12,Jiang Chuanxiu23,Long Mingzhu1ORCID,Zhou Guofu1ORCID,Yue Shuai23ORCID,Ma Wei4ORCID,Liu Xinfeng23ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China.

2. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.

3. University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

4. Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, P.R. China.

Abstract

Phonon-assisted photon upconversion holds great potential for numerous applications, e.g., optical refrigeration. However, traditional semiconductors face energy gain limitations due to thermal energy, typically achieving only ~25 milli–electron volts at room temperature. Here, we demonstrate that quasi–two-dimensional perovskites, with a soft hybrid organic-inorganic lattice, can efficiently upconvert photons with an anti-Stokes shift exceeding 200 milli–electron volts. By using microscopic transient absorption measurements and density functional theory calculations, we explicate that the giant energy gain stems from strong lattice fluctuation leading to a picosecond timescale transient band energy renormalization with a large energy variation of around ±180 milli–electron volts at room temperature. The motion of organic molecules drives the deformation of inorganic framework, providing energy and local states necessary for efficient upconversion within a time constant of around 1 ps. These results establish a deep understanding of perovskite-based photon upconversion and offer previously unknown insights into the development of various upconversion applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3