Protein NMR assignment by isotope pattern recognition

Author:

Rasulov Uluk1ORCID,Wang Harrison K.23ORCID,Viennet Thibault4ORCID,Droemer Maxim A.5ORCID,Matosin Srđan23ORCID,Schindler Sebastian23ORCID,Sun Zhen-Yu J.23ORCID,Mureddu Luca6ORCID,Vuister Geerten W.6ORCID,Robson Scott A.23ORCID,Arthanari Haribabu23ORCID,Kuprov Ilya1ORCID

Affiliation:

1. School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK.

2. Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

3. Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA.

4. Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

5. Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.

6. Department of Molecular and Cell Biology, Institute for Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, UK.

Abstract

The current standard method for amino acid signal identification in protein NMR spectra is sequential assignment using triple-resonance experiments. Good software and elaborate heuristics exist, but the process remains laboriously manual. Machine learning does help, but its training databases need millions of samples that cover all relevant physics and every kind of instrumental artifact. In this communication, we offer a solution to this problem. We propose polyadic decompositions to store millions of simulated three-dimensional NMR spectra, on-the-fly generation of artifacts during training, a probabilistic way to incorporate prior and posterior information, and integration with the industry standard CcpNmr software framework. The resulting neural nets take [ 1 H, 13 C] slices of mixed pyruvate–labeled HNCA spectra (different CA signal shapes for different residue types) and return an amino acid probability table. In combination with primary sequence information, backbones of common proteins (GB1, MBP, and INMT) are rapidly assigned from just the HNCA spectrum.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3