Quantifying partisan news diets in Web and TV audiences

Author:

Muise Daniel1ORCID,Hosseinmardi Homa23,Howland Baird3,Mobius Markus4ORCID,Rothschild David5ORCID,Watts Duncan J.236ORCID

Affiliation:

1. Department of Communication, Stanford University, Stanford, CA, USA.

2. Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.

3. Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA.

4. Microsoft Research New England, Cambridge, MA, USA.

5. Microsoft Research NYC, New York, NY, USA.

6. Operations, Information, and Decisions Department, University of Pennsylvania, Philadelphia, PA, USA.

Abstract

Partisan segregation within the news audience buffers many Americans from countervailing political views, posing a risk to democracy. Empirical studies of the online media ecosystem suggest that only a small minority of Americans, driven by a mix of demand and algorithms, are siloed according to their political ideology. However, such research omits the comparatively larger television audience and often ignores temporal dynamics underlying news consumption. By analyzing billions of browsing and viewing events between 2016 and 2019, with a novel framework for measuring partisan audiences, we first estimate that 17% of Americans are partisan-segregated through television versus roughly 4% online. Second, television news consumers are several times more likely to maintain their partisan news diets month-over-month. Third, TV viewers’ news diets are far more concentrated on preferred sources. Last, partisan news channels’ audiences are growing even as the TV news audience is shrinking. Our results suggest that television is the top driver of partisan audience segregation among Americans.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3