Enhancing corrosion-resistant alloy design through natural language processing and deep learning

Author:

Sasidhar Kasturi Narasimha1ORCID,Siboni Nima Hamidi12,Mianroodi Jaber Rezaei12ORCID,Rohwerder Michael1ORCID,Neugebauer Jörg1ORCID,Raabe Dierk1ORCID

Affiliation:

1. Max-Planck-Institut für Eisenforschung GmbH, Max-Planck Straße-1, 40237 Düsseldorf, Germany.

2. Ergodic Labs, Lohmühlenstraße 65, 12435 Berlin, Germany.

Abstract

We propose strategies that couple natural language processing with deep learning to enhance machine capability for corrosion-resistant alloy design. First, accuracy of machine learning models for materials datasets is often limited by their inability to incorporate textual data. Manual extraction of numerical parameters from descriptions of alloy processing or experimental methodology inevitably leads to a reduction in information density. To overcome this, we have developed a fully automated natural language processing approach to transform textual data into a form compatible for feeding into a deep neural network. This approach has resulted in a pitting potential prediction accuracy substantially beyond state of the art. Second, we have implemented a deep learning model with a transformed-input feature space, consisting of a set of elemental physical/chemical property–based numerical descriptors of alloys replacing alloy compositions. This helped identification of those descriptors that are most critical toward enhancing their pitting potential. In particular, configurational entropy, atomic packing efficiency, local electronegativity differences, and atomic radii differences proved to be the most critical.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3