Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data

Author:

Monsalve-Bravo Gloria M.123ORCID,Lawson Brodie A. J.4567ORCID,Drovandi Christopher456ORCID,Burrage Kevin5678ORCID,Brown Kevin S.910ORCID,Baker Christopher M.111213ORCID,Vollert Sarah A.456ORCID,Mengersen Kerrie456ORCID,McDonald-Madden Eve12ORCID,Adams Matthew P.3456ORCID

Affiliation:

1. School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.

2. Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.

3. School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.

4. Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4001, Australia.

5. ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, QLD 4001, Australia.

6. School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.

7. ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD 4001, Australia.

8. Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.

9. Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA.

10. Department of Chemical, Biological, & Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.

11. School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia.

12. Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC 3010, Australia.

13. Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC 3010, Australia.

Abstract

This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3