Machine learning enables interpretable discovery of innovative polymers for gas separation membranes

Author:

Yang Jason1ORCID,Tao Lei2ORCID,He Jinlong2,McCutcheon Jeffrey R.34ORCID,Li Ying24ORCID

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

2. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

3. Department of Chemical & Biomolecular Engineering, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA.

4. Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.

Abstract

Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine learning (ML) implementation for the discovery of innovative polymers with ideal performance. Specifically, multitask ML models are trained on experimental data to link polymer chemistry to gas permeabilities of He, H 2 , O 2 , N 2 , CO 2 , and CH 4 . We interpret the ML models and extract valuable insights into the contributions of different chemical moieties to permeability and selectivity. We then screen over 9 million hypothetical polymers and identify thousands that lie well above current performance upper bounds, including hundreds of never-before-seen ultrapermeable polymer membranes with O 2 and CO 2 permeability greater than 10 4 and 10 5 Barrers, respectively. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3