A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture

Author:

Mao Haiyan1ORCID,Tang Jing23ORCID,Day Gregory S.4ORCID,Peng Yucan2ORCID,Wang Haoze5ORCID,Xiao Xin2ORCID,Yang Yufei2ORCID,Jiang Yuanwen6ORCID,Chen Shuo1ORCID,Halat David M.17ORCID,Lund Alicia1ORCID,Lv Xudong5,Zhang Wenbo2,Yang Chongqing8,Lin Zhou5ORCID,Zhou Hong-Cai4ORCID,Pines Alexander5ORCID,Cui Yi23ORCID,Reimer Jeffrey A.17ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

4. Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

5. Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.

6. Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

7. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA.

8. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid–stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference31 articles.

1. Carbon capture marches toward practical use

2. Hydrological limits to carbon capture and storage

3. How China could be carbon neutral by mid-century

4. U.S. Environmental Protection Agency “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018” (Publication 430-R-20-002 U.S. Environmental Protection Agency 2020); https://epa.gov/sites/default/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf.

5. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3