Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key mediator of growth and survival

Author:

Whitburn Jessica1ORCID,Rao Srinivasa R.1ORCID,Morris Emma V.1,Tabata Sho2ORCID,Hirayama Akiyoshi2ORCID,Soga Tomoyoshi2ORCID,Edwards James R.3,Kaya Zeynep1ORCID,Palmer Charlotte3,Hamdy Freddie C.1ORCID,Edwards Claire M.13ORCID

Affiliation:

1. Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.

2. Institute for Advanced Biosciences, Keio University, Yamagata, Japan.

3. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

Abstract

The spread of cancer to bone is invariably fatal, with complex cross-talk between tumor cells and the bone microenvironment responsible for driving disease progression. By combining in silico analysis of patient datasets with metabolomic profiling of prostate cancer cells cultured with bone cells, we demonstrate the changing energy requirements of prostate cancer cells in the bone microenvironment, identifying the pentose phosphate pathway (PPP) as elevated in prostate cancer bone metastasis, with increased expression of the PPP rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD) associated with a reduction in progression-free survival. Genetic and pharmacologic manipulation demonstrates that G6PD inhibition reduces prostate cancer growth and migration, associated with changes in cellular redox state and increased chemosensitivity. Genetic blockade of G6PD in vivo results in reduction of tumor growth within bone. In summary, we demonstrate the metabolic plasticity of prostate cancer cells in the bone microenvironment, identifying the PPP and G6PD as metabolic targets for the treatment of prostate cancer bone metastasis.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3