Student of Games: A unified learning algorithm for both perfect and imperfect information games

Author:

Schmid Martin12ORCID,Moravčík Matej12,Burch Neil234ORCID,Kadlec Rudolf12ORCID,Davidson Josh23ORCID,Waugh Kevin23,Bard Nolan23ORCID,Timbers Finbarr25ORCID,Lanctot Marc26,Holland G. Zacharias23ORCID,Davoodi Elnaz26ORCID,Christianson Alden27ORCID,Bowling Michael247ORCID

Affiliation:

1. EquiLibre Technologies, Prague, Czechia.

2. Google Deepmind.

3. Sony AI, New York, NY, USA.

4. Amii, Edmonton, Canada.

5. Midjourney, South San Francisco, CA, USA.

6. Google Deepmind, Montreal, Canada.

7. University of Alberta, Edmonton, Canada.

Abstract

Games have a long history as benchmarks for progress in artificial intelligence. Approaches using search and learning produced strong performance across many perfect information games, and approaches using game-theoretic reasoning and learning demonstrated strong performance for specific imperfect information poker variants. We introduce Student of Games, a general-purpose algorithm that unifies previous approaches, combining guided search, self-play learning, and game-theoretic reasoning. Student of Games achieves strong empirical performance in large perfect and imperfect information games—an important step toward truly general algorithms for arbitrary environments. We prove that Student of Games is sound, converging to perfect play as available computation and approximation capacity increases. Student of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold’em poker, and defeats the state-of-the-art agent in Scotland Yard, an imperfect information game that illustrates the value of guided search, learning, and game-theoretic reasoning.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference80 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3