Topological insulator as an efficient catalyst for oxidative carbonylation of amines

Author:

Li Jiang1ORCID,Wu Jiazhen12ORCID,Park Sang-won13ORCID,Sasase Masato1ORCID,Ye Tian-Nan14ORCID,Lu Yangfan15ORCID,Miyazaki Masayoshi1ORCID,Yokoyama Toshiharu1,Tada Tomofumi1ORCID,Kitano Masaaki1ORCID,Hosono Hideo16ORCID

Affiliation:

1. MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

2. Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong 518055, China.

3. Department of Chemical and Materials Engineering, University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323, Republic of Korea.

4. Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

5. College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China.

6. International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

Abstract

Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal–based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3