Crystal plane orientation-dependent surface atom diffusion in sub–10-nm Au nanocrystals

Author:

Jiang Junnan1ORCID,Chu Shufen12,Zhang Yin3ORCID,Sun Guangbin4,Jin Junhui4,Zeng Xiaoqin2,Chen Mingwei56ORCID,Liu Pan14ORCID

Affiliation:

1. Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

2. National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.

3. State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.

4. Shanghai Jiao Tong University–JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China.

5. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

6. Department of Materials Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Abstract

Surface atom diffusion is a ubiquitous phenomenon in nanostructured metals with ultrahigh surface-to-volume ratios. However, the fundamental atomic mechanism of surface atom diffusion remains elusive. Here, we report in situ atomic-scale observations of surface pressure–driven atom diffusion in gold nanocrystals at room temperature using high-resolution transmission electron microscopy with a high-speed detection camera. The topmost layer of atoms on (001) plane initially diffuse in a column-by-column manner. As diffusion proceeds, the remaining atomic columns collectively inject into adjacent underlayer, accompanied by nucleation of a surface dislocation. In comparison, atoms on (111) plane directly diffuse to the base without collective injection. Quantitative calculations indicate that these crystal plane orientation-dependent atom diffusion behaviors contribute to the larger diffusion coefficient of (111) plane compared to (001) plane in addition to the effect of diffusion activation energy. Our findings provide valuable insights into atomic mechanisms of diffusion-dominant morphology evolution of nanostructured metals and guide the design of nanostructured materials with enhanced structural stability.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3