Affiliation:
1. Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
2. Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
Abstract
Graphene quantum dots (GQDs) are nanosized graphene derivatives with unique photoluminescence (PL) properties that have advantages in optoelectronic applications due to their stable blue light emission. However, aggregation-caused quenching (ACQ) of GQDs limits the practical applications on light-emitting diodes. Here, we suppress the ACQ phenomena of GQDs by reducing the size and converting GQDs into aggregation-induced emission (AIE)–active materials. As the size of GQDs is reduced from 5 to 1 nm, their solid-state PL quantum yields (PLQYs) are improved from 0.5 to 2.5%, preventing ACQ. Two different rotor molecules, benzylamine (BA) and 4,4′-(1,2-diphenylethene-1,2-diyl)diphenol (TPE-DOH), are selectively functionalized by substituting carboxylic acid and carbonyl functional groups. All functionalized GQDs show AIE behaviors with significantly enhanced solid-state PLQYs, up to 16.8%. Afterglow measurements and theoretical calculations reveal that selective functionalization hinders inter- and intramolecular charge transfer, which enhances the fluorescence rate of GQDs and corresponding PLQY.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献