Resolving the molecular architecture of the photoreceptor active zone with 3D-MINFLUX

Author:

Grabner Chad P.1234ORCID,Jansen Isabelle5ORCID,Neef Jakob1234ORCID,Weihs Tobias5ORCID,Schmidt Roman5ORCID,Riedel Dietmar6ORCID,Wurm Christian A.5ORCID,Moser Tobias1234ORCID

Affiliation:

1. Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany.

2. Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.

3. Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.

4. Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany.

5. Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany.

6. Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.

Abstract

Cells assemble macromolecular complexes into scaffoldings that serve as substrates for catalytic processes. Years of molecular neurobiology research indicate that neurotransmission depends on such optimization strategies. However, the molecular topography of the presynaptic active zone (AZ), where transmitter is released upon synaptic vesicle (SV) fusion, remains to be visualized. Therefore, we implemented MINFLUX optical nanoscopy to resolve the AZ of rod photoreceptors. This was facilitated by a novel sample immobilization technique that we name heat-assisted rapid dehydration (HARD), wherein a thin layer of rod synaptic terminals (spherules) was transferred onto glass coverslips from fresh retinal slices. Rod ribbon AZs were readily immunolabeled and imaged in 3D with a precision of a few nanometers. Our 3D-MINFLUX results indicate that the SV release site in rods is a molecular complex of bassoon–RIM2–ubMunc13-2–Ca v 1.4, which repeats longitudinally on both sides of the ribbon.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3