Crack densification in drying colloidal suspensions

Author:

Lilin Paul1ORCID,Ibrahim Mario1,Bischofberger Irmgard1ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

As sessile drops of aqueous colloidal suspensions dry, a close-packed particle deposit forms that grows from the edge of the drop toward the center. To compensate for evaporation over the solid’s surface, water flows radially through the deposit, generating a negative pore pressure in the deposit associated with tensile drying stresses that induce the formation of cracks. As these stresses increase during drying, existing cracks propagate and additional cracks form, until the crack density eventually saturates. We rationalize the dynamics of crack propagation and crack densification with a local energy balance between the elastic energy released by the crack, the energetic cost of fracture, and the elastic energy released by previously formed cracks. We show that the final spacing between radial cracks is proportional to the local thickness of the deposit, while the aspect ratio of the crack segments depends on the shape of the deposit.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3