Topology-guided polar ordering of collective cell migration

Author:

Lång Emma1ORCID,Lång Anna1ORCID,Blicher Pernille2,Rognes Torbjørn13ORCID,Dommersnes Paul Gunnar4,Bøe Stig Ove1ORCID

Affiliation:

1. Department of Microbiology, Oslo University Hospital, Oslo, Norway.

2. Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

3. Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.

4. Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

The ability of epithelial monolayers to self-organize into a dynamic polarized state, where cells migrate in a uniform direction, is essential for tissue regeneration, development, and tumor progression. However, the mechanisms governing long-range polar ordering of motility direction in biological tissues remain unclear. Here, we investigate the self-organizing behavior of quiescent epithelial monolayers that transit to a dynamic state with long-range polar order upon growth factor exposure. We demonstrate that the heightened self-propelled activity of monolayer cells leads to formation of vortex-antivortex pairs that undergo sequential annihilation, ultimately driving the spread of long-range polar order throughout the system. A computational model, which treats the monolayer as an active elastic solid, accurately replicates this behavior, and weakening of cell-to-cell interactions impedes vortex-antivortex annihilation and polar ordering. Our findings uncover a mechanism in epithelia, where elastic solid material characteristics, activated self-propulsion, and topology-mediated guidance converge to fuel a highly efficient polar self-ordering activity.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flocking by Turning Away;Physical Review X;2024-07-12

2. Role of tissue fluidization and topological defects in epithelial tubulogenesis;Physical Review Research;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3