Volcanic CO 2 degassing postdates thermogenic carbon emission during the end-Permian mass extinction

Author:

Wu Yuyang12ORCID,Cui Ying2ORCID,Chu Daoliang1ORCID,Song Haijun1ORCID,Tong Jinnan1,Dal Corso Jacopo1ORCID,Ridgwell Andy3ORCID

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.

2. Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA.

3. Department of Earth Sciences, University of California Riverside, Riverside, CA 92521, USA.

Abstract

Massive carbon dioxide (CO 2 ) emissions are widely assumed to be the driver of the end-Permian mass extinction (EPME). However, the rate of and total CO 2 released, and whether the source changes with time, remain poorly understood, leaving a key question surrounding the trigger for the EPME unanswered. Here, we assimilate reconstructions of atmospheric P co 2 and carbonate δ 13 C in an Earth system model to unravel the history of carbon emissions and sources across the EPME. We infer a transition from a CO 2 source with a thermogenic carbon isotopic signature associated with a slower emission rate to a heavier, more mantle-dominated volcanic source with an increased rate of emissions. This implies that the CO 2 degassing style changed as the Siberian Traps emplacement evolved, which is consistent with geochemical proxy records. Carbon cycle feedbacks from terrestrial ecosystem disturbances may have further amplified the warming and the severity of marine extinctions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3