Compounding effects in flood drivers challenge estimates of extreme river floods

Author:

Jiang Shijie123ORCID,Tarasova Larisa4ORCID,Yu Guo5ORCID,Zscheischler Jakob167ORCID

Affiliation:

1. Department of Compound Environmental Risks, Helmholtz Centre for Environmental Research, Leipzig, Germany.

2. Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.

3. ELLIS Unit Jena, Jena, Germany.

4. Department Catchment Hydrology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany.

5. Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, USA.

6. Technische Universität Dresden, Dresden, Germany.

7. Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden-Leipzig, Germany.

Abstract

Estimating river flood risks under climate change is challenging, largely due to the interacting and combined influences of various flood-generating drivers. However, a more detailed quantitative analysis of such compounding effects and the implications of their interplay remains underexplored on a large scale. Here, we use explainable machine learning to disentangle compounding effects between drivers and quantify their importance for different flood magnitudes across thousands of catchments worldwide. Our findings demonstrate the ubiquity of compounding effects in many floods. Their importance often increases with flood magnitude, but the strength of this increase varies on the basis of catchment conditions. Traditional flood analysis might underestimate extreme flood hazards in catchments where the contribution of compounding effects strongly varies with flood magnitude. Overall, our study highlights the need to carefully incorporate compounding effects in flood risk assessment to improve estimates of extreme floods.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3