Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein

Author:

Lipiński Wojciech P.1ORCID,Visser Brent S.1ORCID,Robu Irina1ORCID,Fakhree Mohammad A. A.2ORCID,Lindhoud Saskia3ORCID,Claessens Mireille M. A. E.2,Spruijt Evan1ORCID

Affiliation:

1. Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.

2. Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands.

3. Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands.

Abstract

Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation. We study the amyloidogenic protein α-synuclein and two truncated α-synuclein variants in the presence of three types of condensates composed of nonaggregating peptides, RNA, or ATP. Our results demonstrate that condensates can markedly speed up amyloid formation when proteins localize to their interface. However, condensates can also significantly suppress aggregation by sequestering and stabilizing amyloidogenic proteins, thereby providing living cells with a possible protection mechanism against amyloid formation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3