Mobilization of isotopically heavy sulfur during serpentinite subduction

Author:

Schwarzenbach Esther M.12ORCID,Dragovic Besim3ORCID,Codillo Emmanuel A.45ORCID,Streicher Linus1ORCID,Scicchitano Maria Rosa6ORCID,Wiechert Uwe1,Klein Frieder7ORCID,Marschall Horst R.8ORCID,Scambelluri Marco9

Affiliation:

1. Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany.

2. Department of Geosciences, University of Fribourg, Fribourg, Switzerland.

3. School of the Earth, Ocean & Environment, University of South Carolina, Columbia, SC, USA.

4. Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole, MA, USA.

5. Earth and Planets Laboratory, Carnegie Institution for Science, Washington DC, USA.

6. Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany.

7. Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

8. Institut für Geowissenschaften, Goethe Universität, Frankfurt am Main, Germany.

9. Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy.

Abstract

Primitive arc magmas are more oxidized and enriched in sulfur-34 ( 34 S) compared to mid-ocean ridge basalts. These findings have been linked to the addition of slab-derived volatiles, particularly sulfate, to arc magmas. However, the oxidation state of sulfur in slab fluids and the mechanisms of sulfur transfer in the slab remain inconclusive. Juxtaposed serpentinite and eclogitic metagabbro from the Voltri Massif (Italy) provide evidence for sulfur mobilization and associated redox processes during infiltration of fluids. Using bulk rock and in situ δ 34 S measurements, combined with thermodynamic calculations, we document the transfer of bisulfide-dominated, 34 S-enriched fluids in equilibrium with serpentinite into adjacent metagabbro. We argue that the process documented in this study is pervasive along the subduction interface and infer that subsequent melting of these reacted slab-mantle interface rocks could produce melts that display the characteristic oxygen fugacity and sulfur isotope signatures of arc magmas worldwide.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3