Recurrent inhibition refines mental templates to optimize perceptual decisions

Author:

Jia Ke1234ORCID,Wang Mengxin4ORCID,Steinwurzel Cecilia4ORCID,Ziminski Joseph J.4ORCID,Xi Yinghua5,Emir Uzay6,Kourtzi Zoe4ORCID

Affiliation:

1. Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China.

2. Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China.

3. NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.

4. Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.

5. Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.

6. Purdue University School of Health Sciences, West Lafayette, IN 47906, USA.

Abstract

Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)–mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3