Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning

Author:

Qu Zhiyuan12ORCID,Zhou Peng3ORCID,Min Fanyi12,Chen Shengnan12ORCID,Guo Mengmeng12,Huang Zhandong4ORCID,Ji Shiyang25,Yan Yongli5ORCID,Yin Xiaodong6ORCID,Jiang Hanqiu78ORCID,Ke Yubin78ORCID,Zhao Yong Sheng25ORCID,Yan Xuehai23ORCID,Qiao Yali12ORCID,Song Yanlin12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

3. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

4. School of Chemical Engineering and Technology, Xi'an JiaoTong University, Shaanxi 710049, P. R. China.

5. Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

6. Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.

7. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.

8. Spallation Neutron Source Science Center, Dongguan 523803, P. R. China.

Abstract

Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3