Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing

Author:

Wu Xiaosong123ORCID,Shi Shuhui4ORCID,Liang Baoshuai123,Dong Yu124ORCID,Yang Rumeng123,Ji Ruiduan123,Wang Zhongrui4ORCID,Huang Weiguo123ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China.

3. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China.

4. Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.

Abstract

Bio-inspired transistor synapses use solid electrolytes to achieve low-power operation and rich synaptic behaviors via ion diffusion and trapping. While these neuromorphic devices hold great promise, they still suffer from challenges such as high leakage currents and power consumption, electrolysis risk, and irreversible conductance changes due to long-range ion migrations and permanent ion trapping. In addition, their response to light is generally limited because of “exciton-polaron quenching”, which restricts their potential in in-sensor neuromorphic visions. To address these issues, we propose replacing solid electrolytes with polyzwitterions, where the cation and anion are covalently concatenated via a flexible alkyl chain, thus preventing long-range ion migrations while inducing good photoresponses to the transistors via interfacial charge trapping. Our detailed studies reveal that polyzwitterion-based transistors exhibit optoelectronic synaptic behavior with ultralow-power consumption (~250 aJ per spike) and enable high-performance in-sensor reservoir computing, achieving 95.56% accuracy in perceiving the trajectory of moving basketballs.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3