Backpropagation-free training of deep physical neural networks

Author:

Momeni Ali1ORCID,Rahmani Babak2ORCID,Malléjac Matthieu1ORCID,del Hougne Philipp3ORCID,Fleury Romain1ORCID

Affiliation:

1. Laboratory of Wave Engineering, Department of Electrical Engineering, EPFL, Lausanne CH-1015, Switzerland.

2. Microsoft Research, Cambridge CB4 0AB, UK.

3. University of Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France.

Abstract

Recent successes in deep learning for vision and natural language processing are attributed to larger models but come with energy consumption and scalability issues. Current training of digital deep-learning models primarily relies on backpropagation that is unsuitable for physical implementation. In this work, we propose a simple deep neural network architecture augmented by a physical local learning (PhyLL) algorithm, which enables supervised and unsupervised training of deep physical neural networks without detailed knowledge of the nonlinear physical layer’s properties. We trained diverse wave-based physical neural networks in vowel and image classification experiments, showcasing the universality of our approach. Our method shows advantages over other hardware-aware training schemes by improving training speed, enhancing robustness, and reducing power consumption by eliminating the need for system modeling and thus decreasing digital computation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference69 articles.

1. Deep learning

2. Deep Learning: Methods and Applications

3. Energy-efficient communication

4. D. Patterson J. Gonzalez Q. Le C. Liang L.-M. Munguia D. Rothchild D. So M. Texier J. Dean Carbon Emissions and Large Neural Network Training. arXiv:2104.10350 [cs.LG] (2021).

5. Inference in artificial intelligence with deep optics and photonics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3