Affiliation:
1. Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
Abstract
Cysteine as peptide precursor and catalyst
Among amino acids, cysteine is highly reactive as a nucleophile, metal ligand, and participant in redox and radical reactions. These properties make cysteine attractive as a component of prebiotic chemistry, but traditional Strecker synthesis of α-aminonitriles, which can serve as peptide precursors, cannot produce free cysteine. Foden
et al.
found that a simple acylation of the free amine prevented degradation of cysteine nitrile and enabled synthesis of this cysteine precursor from acetyl dehydroalanine nitrile and a sulfide donor (see the Perspective by Muchowska and Moran). When combined with other proteinogenic α-aminonitriles, acetylcysteine or derivative thiols catalyzed efficient peptide ligation in water. These results highlight how prebiotic synthesis of precursors can also generate function by creating a catalyst for polymerization.
Science
, this issue p.
865
; see also p.
767
Funder
Simons Foundation
Engineering and Physical Sciences Research Council
Volkswagen Foundation
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献