Prediction of Hydrogen Flux Through Sulfur-Tolerant Binary Alloy Membranes

Author:

Kamakoti Preeti12,Morreale Bryan D.12,Ciocco Michael V.12,Howard Bret H.12,Killmeyer Richard P.12,Cugini Anthony V.12,Sholl David S.12

Affiliation:

1. U.S. Department of Energy National Energy Technology Laboratory, Pittsburgh, PA 15236, USA.

2. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Abstract

Metal membranes play a vital role in hydrogen purification. Defect-free membranes can exhibit effectively infinite selectivity but must also provide high fluxes, resistance to poisoning, long operational lifetimes, and low cost. Alloying offers one route to improve on membranes based on pure metals such as palladium. We show how ab initio calculations and coarse-grained modeling can accurately predict hydrogen fluxes through binary alloy membranes as functions of alloy composition, temperature, and pressure. Our approach, which requires no experimental input apart from knowledge of bulk crystal structures, is demonstrated for palladium-copper alloys, which show nontrivial behavior due to the existence of face-centered cubic and body-centered cubic crystal structures and have the potential to resist sulfur poisoning. The accuracy of our approach is examined by a comparison with extensive experiments using thick foils at elevated temperatures. Our experiments also demonstrate the ability of these membranes to resist poisoning by hydrogen sulfide.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3