Spin Transfer Torques in MnSi at Ultralow Current Densities

Author:

Jonietz F.1,Mühlbauer S.12,Pfleiderer C.1,Neubauer A.1,Münzer W.1,Bauer A.1,Adams T.1,Georgii R.12,Böni P.1,Duine R. A.3,Everschor K.4,Garst M.4,Rosch A.4

Affiliation:

1. Physik-Department E21, Technische Universität München, D-85748 Garching, Germany.

2. Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, D-85748 Garching, Germany.

3. Institute for Theoretical Physics, Utrecht University, 3584 CE Utrecht, Netherlands.

4. Institute of Theoretical Physics, University of Cologne, D-50937 Cologne, Germany.

Abstract

Spin Control Controlling and manipulating the spin of an electron is a central requirement for applications in spintronics. Some of the challenges researchers are facing include efficient creation of spin currents, minimization of Joule heating, and extending the lifetime of electronic spins, which is especially important for quantum information applications. Costache and Valenzuela (p. 1645 ) address the first challenge by designing and fabricating an efficient and simple superconducting-based single-electron transistor that can produce spin current with controlled flow. Key to the design is asymmetric tunneling, which leads to a ratchet effect (or diode-like behavior), allowing the separation of up and down spins. Jonietz et al. (p. 1648 ) use electric currents five orders of magnitude smaller than those used previously in nanostructures to manipulate magnetization in a bulk material, MnSi, pointing the way toward decreased Joule heating in spintronic devices. This so-called spin-torque effect causes the rotation of the skyrmion lattice of spins, characteristic of MnSi, which is detected by neutron scattering. Finally, McCamey et al. (p. 1652 ) extend the short lifetime of an electronic spin of a phosphorous dopant by mapping it onto the much longer lived nuclear spin of the atom. Mapping the nuclear spin back onto the electronic spin allows production of a spin memory with a storage time exceeding 100s, which should prove useful for future practical applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 991 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3