Critical instability at moving keyhole tip generates porosity in laser melting

Author:

Zhao Cang12ORCID,Parab Niranjan D.3ORCID,Li Xuxiao4ORCID,Fezzaa Kamel3ORCID,Tan Wenda4ORCID,Rollett Anthony D.56ORCID,Sun Tao7ORCID

Affiliation:

1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China.

3. X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

4. Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.

5. Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

6. NextManufacturing Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

7. Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA.

Abstract

Driving the pores away The formation of “keyholes” (vapor-filled depressions) during additive manufacturing leads to porosity, which degrades alloy performance, especially fracture properties, and remains a big challenge for the 3D printing of metals. Zhao et al. used high-speed x-ray imaging to take a detailed look at how keyhole formation connects to porosity in a titanium alloy. They found that instability at the keyhole tip drives pores away to get trapped in the solidification front. Understanding this process and the operating parameters under which it occurs provides a roadmap for avoiding porosity and building high-quality metal parts. Science , this issue p. 1080

Funder

National Science Foundation

U.S. Department of Defense

U.S. Department of Energy

University of Virginia

Tsinghua University

National Aeronautics and Space Administration (NASA) University Leadership Initiative

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3