Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials

Author:

Zalden Peter123ORCID,Quirin Florian4,Schumacher Mathias5,Siegel Jan6ORCID,Wei Shuai7ORCID,Koc Azize48,Nicoul Matthieu4ORCID,Trigo Mariano12,Andreasson Pererik9ORCID,Enquist Henrik9,Shu Michael J.10,Pardini Tommaso11,Chollet Matthieu12ORCID,Zhu Diling12,Lemke Henrik1213,Ronneberger Ider5ORCID,Larsson Jörgen9ORCID,Lindenberg Aaron M.1214ORCID,Fischer Henry E.15,Hau-Riege Stefan11ORCID,Reis David A.12ORCID,Mazzarello Riccardo5ORCID,Wuttig Matthias716ORCID,Sokolowski-Tinten Klaus4ORCID

Affiliation:

1. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.

2. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.

3. European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.

4. Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany.

5. Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, Germany.

6. Instituto de Optica, CSIC, C/Serrano 121, 28006 Madrid, Spain.

7. I. Physikalisches Institut and JARA-FIT, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany.

8. Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.

9. Department of Physics, Lund University, Professorsgatan 1, 223 62 Lund, Sweden.

10. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

11. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

12. Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.

13. Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland.

14. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

15. Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.

16. PGI 10 (Green IT), Forschungszentrum Jülich, 52428 Jülich, Germany.

Abstract

Structural switch for fast switching Phase-change materials are important for computer memory. They can quickly switch from glassy to crystalline using a thermal pulse and then lock in that structure for a long time at lower temperature. Zalden et al. probed the underlying atomic structure of two phase-change materials during this switching using ultrafast x-rays and simulations (see the Perspective by Rao et al. ). A liquid-liquid phase transition in both materials allowed fast switching at high temperatures. The lower-temperature glass locks in the structure, allowing for long-term memory storage. Science , this issue p. 1062 ; see also p. 1032

Funder

U.S. Department of Energy

Deutsche Forschungsgemeinschaft

JARA-HPC from RWTH Aachen University

Swedish Science Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference81 articles.

1. The World’s Technological Capacity to Store, Communicate, and Compute Information

2. S. Raoux C. Rettner Y. T. Chen J. Jordan-Sweet Y. Zhang M. Caldwell H.-S. P. Wong D. Milliron J. Cha in 2007 Non-Volatile Memory Technology Symposium (IEEE 2007) vol. 5 pp. 30–35; https://ieeexplore.ieee.org/document/4389940/.

3. Phase Change Memory

4. Phase-change materials for rewriteable data storage

5. Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the link between fragile-to-strong kinetics and β-relaxation in chalcogenide glasses;Ceramics International;2024-03

2. Free Electron Lasers for X-ray Scattering and Diffraction;Structural Dynamics with X-ray and Electron Scattering;2023-12-20

3. Pressure-induced reversal of Peierls-like distortions elicits the polyamorphic transition in GeTe and GeSe;Nature Communications;2023-12-07

4. The fragile-to-strong kinetics features of two-dimensional confined ultrathin Ag-In-Sb-Te film;Journal of Alloys and Compounds;2023-12

5. Summary;Formation and Temperature Stability of the Liquid Phase in Thin-Film Systems;2023-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3