Cycling Li-O 2 batteries via LiOH formation and decomposition

Author:

Liu Tao1,Leskes Michal1,Yu Wanjing12,Moore Amy J.1,Zhou Lina1,Bayley Paul M.1,Kim Gunwoo12,Grey Clare P.1

Affiliation:

1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

2. Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.

Abstract

Solving the problems with Li-air batteries Li-air batteries come as close as possible to the theoretical limits for energy density in a battery. By weight, this is roughly 10 times higher than conventional lithium-ion batteries and would be sufficient to power cars with a range comparable to those with gasoline engines. But engineering a Li-air battery has been a challenge. Liu et al. managed to overcome the remaining challenges: They were able to avoid electrode passivation, turn limited solvent stability into an advantage, eliminate the fatal problems caused by superoxides, achieve high power with negligible degradation, and even circumvent the problems of removing atmospheric water. Science , this issue p. 530

Funder

U.S. Department of Energy

Energy Efficiency and Renewable Energy

Engineering and Physical Sciences Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3