Affiliation:
1. Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.
Abstract
Many bacterial pathogens encode a multisubunit toxin, termed cytolethal distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and, eventually, chromatin fragmentation and cell death. In one such pathogen,
Campylobacter jejuni
, one of the subunits of this toxin, CdtB, was shown to exhibit features of type I deoxyribonucleases. Transient expression of this subunit in cultured cells caused marked chromatin disruption. Microinjection of low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB mutants with substitutions in residues equivalent to those required for catalysis or magnesium binding in type I deoxyribonucleases did not cause chromatin disruption. CDT holotoxin containing these mutant forms of CdtB did not induce morphological changes or cell cycle arrest.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
463 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献