Learning skillful medium-range global weather forecasting

Author:

Lam Remi1ORCID,Sanchez-Gonzalez Alvaro1ORCID,Willson Matthew1ORCID,Wirnsberger Peter1ORCID,Fortunato Meire1ORCID,Alet Ferran1ORCID,Ravuri Suman1ORCID,Ewalds Timo1ORCID,Eaton-Rosen Zach1ORCID,Hu Weihua1ORCID,Merose Alexander2ORCID,Hoyer Stephan2ORCID,Holland George1,Vinyals Oriol1ORCID,Stott Jacklynn1ORCID,Pritzel Alexander1,Mohamed Shakir1ORCID,Battaglia Peter1ORCID

Affiliation:

1. Google DeepMind, London, UK.

2. Google Research, Mountain View, CA, USA.

Abstract

Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference74 articles.

1. 100 Years of Progress in Forecasting and NWP Applications

2. The quiet revolution of numerical weather prediction

3. Global extreme heat forecasting using neural weather models;Lopez-Gomez I.;Artif. Intell. Earth Syst.,2022

4. Deep learning for precipitation nowcasting: A benchmark and a new model;Shi X.;Adv. Neural Inf. Process. Syst.,2017

5. C. K. Sønderby L. Espeholt J. Heek M. Dehghani A. Oliver T. Salimans S. Agrawal J. Hickey N. Kalchbrenner Metnet: A neural weather model for precipitation forecasting. arXiv:2003.12140 [cs.LG] (2020).

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3