Direct identification of the charge state in a single platinum nanoparticle on titanium oxide

Author:

Aso Ryotaro1ORCID,Hojo Hajime2ORCID,Takahashi Yoshio3ORCID,Akashi Tetsuya3,Midoh Yoshihiro4ORCID,Ichihashi Fumiaki3ORCID,Nakajima Hiroshi1ORCID,Tamaoka Takehiro5ORCID,Yubuta Kunio1ORCID,Nakanishi Hiroshi6ORCID,Einaga Hisahiro2,Tanigaki Toshiaki3ORCID,Shinada Hiroyuki3,Murakami Yasukazu15ORCID

Affiliation:

1. Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.

2. Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.

3. Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan.

4. Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan.

5. The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.

6. National Institute of Technology, Akashi College, Akashi, Hyogo 674-8501, Japan.

Abstract

A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3