Affiliation:
1. Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095–1569, USA.
Abstract
Filling a Cavity
Unlike liquid ammonia, water cannot sustain a steady concentration of isolated electrons. Nonetheless, high-energy irradiation can introduce a small number of free charges that engage in potent reductive chemistry and have clear spectroscopic signatures. The manner in which water solubilizes these hydrated electrons has remained uncertain, but the general consensus has been that repulsive interactions drive the nearest water molecules away, leaving the electron in a nearly spherical empty cavity.
Larsen
et al.
(p.
65
; see the Perspective by
Jordan and Johnson
) upend this consensus with simulations based on a more thorough potential function for modeling the competing attractions and repulsions between the electron and surrounding water. The calculations suggest that the hydrated electron actually draws water in, occupying a region denser than the pure bulk liquid. The model reproduces experimental spectral and dynamic observations as effectively as, and in some cases better than, the cavity framework.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
216 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献