Observation of the transition state for pressure-induced BO 3 → BO 4 conversion in glass

Author:

Edwards Trenton1,Endo Takatsugu1,Walton Jeffrey H.2,Sen Sabyasachi1

Affiliation:

1. Division of Materials Science and Engineering, University of California at Davis, Davis, CA 95616, USA.

2. Nuclear Magnetic Resonance Facility, University of California at Davis, Davis, CA 95616, USA.

Abstract

Catching changing boron coordination Laboratory glassware and kitchen cookware alike are made of glass that contains different cations, including boron, sodium, and aluminum. Properties of glass depend on the number and location of oxygen atoms surrounding each cation. Edwards et al. combine nuclear magnetic resonance measurements with theoretical calculations to understand structural transformations in borosilicate glass (see the Perspective by Youngman). Boron atoms in planar threefold coordination move out of plane with increasing pressure to form trigonal pyramids. Identification of this type of transition state connects structural evolution with stress-induced processes in amorphous materials. In borosilicate glass, the transition leads to the formation of tetrahedral fourfold-coordinated boron that tunes glass properties for use in numerous applications. Science , this issue p. 1027 ; see also p. 998

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference27 articles.

1. S. R. Elliott The Physics and Chemistry of Solids (Wiley New York ed. 1 1998).

2. Inorganic glasses, glass-forming liquids and amorphizing solids

3. G. H. Wolf P. F. McMillan in Structure Dynamics and Properties of Silicate Melts J. F. Stebbins P. F. McMillan D. B. Dingwell Eds. Reviews in Mineralogy vol. 32 (Mineralogical Society of America Washington DC 1995).

4. NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure

5. Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution 11B, 29Si and 27Al NMR studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3