An on/off Berry phase switch in circular graphene resonators

Author:

Ghahari Fereshte12ORCID,Walkup Daniel12ORCID,Gutiérrez Christopher12ORCID,Rodriguez-Nieva Joaquin F.34ORCID,Zhao Yue125,Wyrick Jonathan1ORCID,Natterer Fabian D.16ORCID,Cullen William G.1ORCID,Watanabe Kenji7ORCID,Taniguchi Takashi7,Levitov Leonid S.3,Zhitenev Nikolai B.1ORCID,Stroscio Joseph A.1ORCID

Affiliation:

1. Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

2. Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA.

3. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

4. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

5. Department of Physics, South University of Science and Technology of China, Shenzhen, China.

6. Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

7. National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.

Abstract

Flicking the Berry phase switch When an electron completes a cycle around the Dirac point (a particular location in graphene's electronic structure), the phase of its wave function changes by π. This so-called Berry phase is tricky to observe directly in solid-state measurements. Ghahari et al. built a graphene nanostructure consisting of a central region doped with positive carriers surrounded by a negatively doped background. Scanning tunneling spectroscopy revealed sudden jumps in conductivity as the external magnetic field was increased past a threshold value. The jumps occurred when electron orbits started encompassing the Dirac point, reflecting the switch of the Berry phase from zero to π. The tunability of conductivity by such minute changes in magnetic field is promising for future applications. Science , this issue p. 845

Funder

National Science Foundation

U.S. Army Research Laboratory

Swiss National Science Foundation

National Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3