A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Author:

Jansen Ronald1234,Yu Haiyuan1234,Greenbaum Dov1234,Kluger Yuval1234,Krogan Nevan J.1234,Chung Sambath1234,Emili Andrew1234,Snyder Michael1234,Greenblatt Jack F.1234,Gerstein Mark1234

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Post Office Box 208114, New Haven, CT 06520, USA.

2. Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, Post Office Box 208114, New Haven, CT 06520, USA.

3. Department of Computer Science, Yale University, 266 Whitney Avenue, Post Office Box 208114, New Haven, CT 06520, USA.

4. Banting and Best Department of Medical Research, Department of Molecular and Medical Research, University of Toronto, Toronto, M5G 1L6, Ontario, Canada.

Abstract

We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint .

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1015 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3