Ultrafast high-endurance memory based on sliding ferroelectrics

Author:

Yasuda Kenji12ORCID,Zalys-Geller Evan1,Wang Xirui1ORCID,Bennett Daniel3ORCID,Cheema Suraj S.4ORCID,Watanabe Kenji5ORCID,Taniguchi Takashi6ORCID,Kaxiras Efthimios37ORCID,Jarillo-Herrero Pablo1ORCID,Ashoori Raymond1ORCID

Affiliation:

1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.

2. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA.

3. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

4. Research Laboratory of Electronics, MA Institute of Technology, Cambridge, MA, USA.

5. Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan.

6. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan.

7. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Abstract

The persistence of voltage-switchable collective electronic phenomena down to the atomic scale has extensive implications for area- and energy-efficient electronics, especially in emerging nonvolatile memory technology. We investigate the performance of a ferroelectric field-effect transistor (FeFET) based on sliding ferroelectricity in bilayer boron nitride at room temperature. Sliding ferroelectricity represents a different form of atomically thin two-dimensional (2D) ferroelectrics, characterized by the switching of out-of-plane polarization through interlayer sliding motion. We examined the FeFET device employing monolayer graphene as the channel layer, which demonstrated ultrafast switching speeds on the nanosecond scale and high endurance exceeding 10 11 switching cycles, comparable to state-of-the-art FeFET devices. These characteristics highlight the potential of 2D sliding ferroelectrics for inspiring next-generation nonvolatile memory technology.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3