Efficient formation of single-copy human artificial chromosomes

Author:

Gambogi Craig W.1234ORCID,Birchak Gabriel J.1235ORCID,Mer Elie1234ORCID,Brown David M.6,Yankson George7ORCID,Kixmoeller Kathryn1234ORCID,Gavade Janardan N.134ORCID,Espinoza Josh L.6ORCID,Kashyap Prakriti134ORCID,Dupont Chris L.6ORCID,Logsdon Glennis A.12348ORCID,Heun Patrick78ORCID,Glass John I.6ORCID,Black Ben E.12345ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

2. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

3. Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

4. Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

5. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

6. J. Craig Venter Institute, La Jolla, CA 92037, USA.

7. Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

8. Department of Biology, Molecular Genetics, Technical University Darmstadt, 64289 Darmstadt, Germany.

Abstract

Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insights into a functional synthetic plant genome;New Phytologist;2024-08-19

2. Plant synthetic genomics: Big lessons from the little yeast;Cell Chemical Biology;2024-08

3. Yeasty HAC Does the Trick;GEN Biotechnology;2024-06-01

4. Engineering better artificial chromosomes;Science;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3