The half-filled Landau level: The case for Dirac composite fermions

Author:

Geraedts Scott D.1,Zaletel Michael P.2,Mong Roger S. K.134,Metlitski Max A.56,Vishwanath Ashvin78,Motrunich Olexei I.14

Affiliation:

1. Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA.

2. Station Q, Microsoft Research, Santa Barbara, CA 93106, USA.

3. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

4. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA.

5. Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.

6. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA.

7. Department of Physics, University of California, Berkeley, CA 94720, USA.

8. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

All is well with particle-hole symmetry In an external magnetic field, the energy of an electron in a two-dimensional system takes discrete values, called Landau levels. At high enough fields, all electrons in a solid can fit in the lowest Landau level. If exactly half of that level is filled with electrons, standard theory predicts that a special fermion liquid phase will form that makes a distinction between the filled and empty states (particles and holes). A recent conjecture, in contrast, predicted a liquid consisting of massless Dirac particles that respects the symmetry between particles and holes. Geraedts et al. used sophisticated numerical methods to provide strong evidence for this conjecture. Science , this issue p. 197

Funder

National Science Engineering Research Council of Canada

U.S. Department of Energy BES

Sherman Fairchild Foundation

U.S. Army Research Office

Simons Investigator Award

NSF

Caltech Institute for Quantum Information and Matter

Gordon and Betty Moore Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3