Affiliation:
1. Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit, University of California at Davis, Davis, CA 95616, USA.
Abstract
Feeling the Pinch
Nanoparticles exhibit many different properties compared to their larger counterparts, but how the stability of certain phases relative to others is affected by a change in particle size is often unclear. Using a thermodynamic probe sensitive to nanoparticle surfaces,
Navrotsky
et al.
(p.
199
) show that surface energy strongly influences the stability of some metal oxides relative to others. For example, nanoparticles of CoO, which are stable at larger sizes, are only stable over a very narrow range of conditions due their high surface energies. Cobalt oxides are catalysts that may one day promote the cost-effective generation of hydrogen from water, but nanoparticles in soils and biological systems—including iron and manganese oxides—also feel the pinch of surface energy on their range of stability.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
293 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献