Affiliation:
1. Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany.
2. Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim an der Ruhr, Germany.
Abstract
Photoredox catalysis enables distinctive and broadly applicable chemical reactions, but controlling their selectivity has proven to be difficult. The pursuit of enantioselectivity is a particularly daunting challenge, arguably because of the high energy of the activated radical (ion) intermediates, and previous approaches have invariably required pairing of the photoredox catalytic cycle with an additional activation mode for asymmetric induction. A potential solution for photoredox reactions proceeding via radical ions would be catalytic pairing with enantiopure counterions. However, although attempts toward this approach have been described, high selectivity has not yet been accomplished. Here we report a potentially general solution to radical cation–based asymmetric photoredox catalysis. We describe organic salts, featuring confined imidodiphosphorimidate counteranions that catalyze highly enantioselective [2+2]-cross cycloadditions of styrenes.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献