Multidimensional control of therapeutic human cell function with synthetic gene circuits

Author:

Li Hui-Shan12ORCID,Israni Divya V.12ORCID,Gagnon Keith A.12ORCID,Gan Kok Ann13ORCID,Raymond Michael H.12ORCID,Sander Jeffry D.456ORCID,Roybal Kole T.78910ORCID,Joung J. Keith45ORCID,Wong Wilson W.12ORCID,Khalil Ahmad S.12311ORCID

Affiliation:

1. Biological Design Center, Boston University, Boston, MA, USA.

2. Department of Biomedical Engineering, Boston University, Boston, MA, USA.

3. Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA.

4. Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.

5. Department of Pathology, Harvard Medical School, Boston, MA, USA.

6. Department of Genomics Technologies, Corteva Agriscience, Johnston, IA, USA.

7. Cell Design Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.

8. Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.

9. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

10. Chan Zuckerberg Biohub, San Francisco, CA, USA.

11. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.

Abstract

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration–approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3