The Free-Energy Landscape of Clusters of Attractive Hard Spheres

Author:

Meng Guangnan1,Arkus Natalie2,Brenner Michael P.2,Manoharan Vinothan N.12

Affiliation:

1. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

2. Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Abstract

Packing Puzzle The packing of a large number of spheres is a well-studied problem with maximal packing based on the arrangement of nearest neighbors. With much smaller numbers of particles, it is the free energy that governs which packing arrangements dominate. Meng et al. (p. 560 ; see the Perspective by Crocker ) looked at the assembly of colloidal clusters where the number of particles was limited from 2 to 10. For five particles or fewer, only one packing arrangement was found. For six or more particles, while a number of similar energy structures could form, the probability of formation was biased toward those structures with the greater number of nearest-neighbor connections.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 263 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3