Ionocaloric refrigeration cycle

Author:

Lilley Drew12ORCID,Prasher Ravi12ORCID

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.

Abstract

Developing high-efficiency cooling with safe, low–global warming potential refrigerants is a grand challenge for tackling climate change. Caloric effect–based cooling technologies, such as magneto- or electrocaloric refrigeration, are promising but often require large applied fields for a relatively low coefficient of performance and adiabatic temperature change. We propose using the ionocaloric effect and the accompanying thermodynamic cycle as a caloric-based, all–condensed-phase cooling technology. Theoretical and experimental results show higher adiabatic temperature change and entropy change per unit mass and volume compared with other caloric effects under low applied field strengths. We demonstrated the viability of a practical system using an ionocaloric Stirling refrigeration cycle. Our experimental results show a coefficient of performance of 30% relative to Carnot and a temperature lift as high as 25°C using a voltage strength of ~0.22 volts.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference53 articles.

1. International Energy Agency (IEA) The Future of Cooling: Opportunities for energy-efficient air conditioning (IEA 2018); https://www.iea.org/reports/the-future-of-cooling.

2. The large contribution of projected HFC emissions to future climate forcing

3. Heat exposure and global air conditioning

4. Limited options for low-global-warming-potential refrigerants

5. D. Behringer F. Heydel B. Gschrey S. Osterheld W. Schwarz K. Warncke F. Freeling K. Nödler S. Henne S. Reimann M. Blepp W. Jörß R. Liu S. Ludig I. Rüdenauer S. Gartiser “Persistent degradation products of halogenated refrigerants and blowing agents in the environment: Type environmental concentrations and fate with particular regard to new halogenated substitutes with low global warming potential” (German Environment Agency report no. FB000452/ENG 2021); https://www.umweltbundesamt.de/publikationen/persistent-degradation-products-of-halogenated.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3