Unique in the shopping mall: On the reidentifiability of credit card metadata

Author:

de Montjoye Yves-Alexandre1,Radaelli Laura2,Singh Vivek Kumar13,Pentland Alex “Sandy”1

Affiliation:

1. Media Lab, Massachusetts Institute of Technology (MIT), 20 Amherst Street, Cambridge, MA 02139, USA.

2. Department of Computer Science, Aarhus University, Aabogade 34, Aarhus, 8200, Denmark.

3. School of Communication and Information, Rutgers University, 4 Huntington Street, New Brunswick, NJ 08901, USA.

Abstract

Large-scale data sets of human behavior have the potential to fundamentally transform the way we fight diseases, design cities, or perform research. Metadata, however, contain sensitive information. Understanding the privacy of these data sets is key to their broad use and, ultimately, their impact. We study 3 months of credit card records for 1.1 million people and show that four spatiotemporal points are enough to uniquely reidentify 90% of individuals. We show that knowing the price of a transaction increases the risk of reidentification by 22%, on average. Finally, we show that even data sets that provide coarse information at any or all of the dimensions provide little anonymity and that women are more reidentifiable than men in credit card metadata.

Funder

Belgian American Educational Foundation

Army Research Laboratory

European Commission

FP7-People Marie Curie Action

Wallonie-Bruxelles International

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference34 articles.

1. S. Higginbotham “For science big data is the microscope of the 21st century” (2011); http://gigaom.com/2011/11/08/for-science-big-data-is-the-microscope-of-the-21st-century/.

2. Computational Social Science

3. Computational social science: Making the links

4. D. J. Watts Computational social science: Exciting progress and future directions. Winter Issue of The Bridge on Frontiers of Engineering 43 5–10 (2013).

5. Quantifying the Impact of Human Mobility on Malaria

Cited by 344 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3