Tunable and giant valley-selective Hall effect in gapped bilayer graphene

Author:

Yin Jianbo12ORCID,Tan Cheng3ORCID,Barcons-Ruiz David1ORCID,Torre Iacopo1ORCID,Watanabe Kenji4ORCID,Taniguchi Takashi4ORCID,Song Justin C. W.5ORCID,Hone James3ORCID,Koppens Frank H. L.16ORCID

Affiliation:

1. ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.

2. Beijing Graphene Institute, Beijing, China.

3. Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

4. National Institute for Materials Science, Tsukuba, Japan.

5. Division of Physics and Applied Physics, Nanyang Technological University, 637371 Singapore, Singapore.

6. ICREA–Institució Catalana de Recerça i Estudis Avancats, Barcelona, Spain.

Abstract

Berry curvature is analogous to magnetic field but in momentum space and is commonly present in materials with nontrivial quantum geometry. It endows Bloch electrons with transverse anomalous velocities to produce Hall-like currents even in the absence of a magnetic field. We report the direct observation of in situ tunable valley-selective Hall effect (VSHE), where inversion symmetry, and thus the geometric phase of electrons, is controllable by an out-of-plane electric field. We use high-quality bilayer graphene with an intrinsic and tunable bandgap, illuminated by circularly polarized midinfrared light, and confirm that the observed Hall voltage arises from an optically induced valley population. Compared with molybdenum disulfide (MoS 2 ), we find orders of magnitude larger VSHE, attributed to the inverse scaling of the Berry curvature with bandgap. By monitoring the valley-selective Hall conductivity, we study the Berry curvature’s evolution with bandgap. This in situ manipulation of VSHE paves the way for topological and quantum geometric optoelectronic devices, such as more robust switches and detectors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3