Mesoscopic Phase Coherence in a Quantum Spin Fluid

Author:

Xu Guangyong12345,Broholm C.12345,Soh Yeong-Ah12345,Aeppli G.12345,DiTusa J. F.12345,Chen Ying12345,Kenzelmann M.12345,Frost C. D.12345,Ito T.12345,Oka K.12345,Takagi H.12345

Affiliation:

1. Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA.

2. Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

3. NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA.

4. Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA.

5. London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17–19 Gordon Street, London, WC1H OAH UK.

Abstract

Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y 2 BaNiO 5 ), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference32 articles.

1. In superconductors and superfluids phase coherence is macroscopic whereas the microscopic coherence lengths associated with the single or paired particles participating in the condensate are finite and remain so down to zero temperature. The equal-time correlation length ξ 0 in the experiments reported here is analogous to the latter quantity.

2. B. D. Josephson, Phys. Lett.1, 2511 (1962).

3. Topologically protected quantum bits using Josephson junction arrays

4. Vanishing Hall Resistance at High Magnetic Field in a Double-Layer Two-Dimensional Electron System

5. Observation of Interference Between Two Bose Condensates

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3