Transonic dislocation propagation in diamond

Author:

Katagiri Kento12345ORCID,Pikuz Tatiana6,Fang Lichao345ORCID,Albertazzi Bruno7,Egashira Shunsuke2ORCID,Inubushi Yuichi89,Kamimura Genki1,Kodama Ryosuke126,Koenig Michel17ORCID,Kozioziemski Bernard10ORCID,Masaoka Gooru1,Miyanishi Kohei9ORCID,Nakamura Hirotaka1ORCID,Ota Masato2ORCID,Rigon Gabriel11ORCID,Sakawa Youichi2,Sano Takayoshi2ORCID,Schoofs Frank12ORCID,Smith Zoe J.13ORCID,Sueda Keiichi9ORCID,Togashi Tadashi89ORCID,Vinci Tommaso7ORCID,Wang Yifan345ORCID,Yabashi Makina89ORCID,Yabuuchi Toshinori89ORCID,Dresselhaus-Marais Leora E.345ORCID,Ozaki Norimasa12

Affiliation:

1. Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.

2. Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan.

3. Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.

4. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

5. PULSE Institute, Stanford University, Stanford, CA 94305, USA.

6. Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, Suita, 565-0871, Japan.

7. LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France.

8. Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan.

9. RIKEN SPring-8 Center, Sayo, 679-5148, Japan.

10. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

11. Department of Physics, Nagoya University, Nagoya, 464-8602, Japan.

12. United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK.

13. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

Abstract

The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3