Dynamics and mechanism of a light-driven chloride pump

Author:

Mous Sandra1ORCID,Gotthard Guillaume12ORCID,Ehrenberg David3ORCID,Sen Saumik4ORCID,Weinert Tobias2ORCID,Johnson Philip J. M.5ORCID,James Daniel2ORCID,Nass Karol6ORCID,Furrer Antonia2ORCID,Kekilli Demet2ORCID,Ma Pikyee2ORCID,Brünle Steffen2ORCID,Casadei Cecilia Maria12,Martiel Isabelle7,Dworkowski Florian7ORCID,Gashi Dardan26,Skopintsev Petr2,Wranik Maximilian2,Knopp Gregor6ORCID,Panepucci Ezequiel7ORCID,Panneels Valerie2ORCID,Cirelli Claudio6ORCID,Ozerov Dmitry8ORCID,Schertler Gebhard F. X.12ORCID,Wang Meitian7ORCID,Milne Chris6ORCID,Standfuss Joerg2ORCID,Schapiro Igor4ORCID,Heberle Joachim3ORCID,Nogly Przemyslaw1ORCID

Affiliation:

1. Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.

2. Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland.

3. Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany.

4. Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.

5. Laboratory of Nonlinear Optics, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland.

6. Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland.

7. Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland.

8. Science IT, Paul Scherrer Institute, Villigen PSI, Switzerland.

Abstract

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3